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KEYWORDS ABSTRACT
Single machine scheduling, This paper addresses the Tardy/Lost penalty minimization on a
Tardy/Lost penalty, single machine. According to this penalty criterion, if the tardiness

Dynamic programming,
Approximation algorithm,
FPTAS.

of a job exceeds a predefined value, the job will be lost and
penalized by a fixed value. Besides its application in real world
problems, Tardy/Lost measure is a general form of popular
objective functions such as weighted tardiness, late work and
tardiness with rejection; hence, the results of this study are
applicable to them. Initially, we present two approximation
algorithms. Then, two special cases of the main problem are
considered. In the first case, all jobs have the same tardiness
weights where a fully polynomial time approximation scheme
(FPTAS) is developed using the technique of *“‘structuring the
execution of an algorithm™. The second special case occurs when
none of the jobs can be early. For this case, a 2-approximation
and a dynamic programming algorithms are developed, were the
latter is converted to an FPTAS.
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1. Introduction

machines, and loss penalty for job i is greater
than the maximum allowed tardiness penalty.

In this paper, we study a single machine
scheduling problem to minimize Tardy/Lost
penalties of common due dates. Every job
i (i=1,2,...,n) has a processing time, p;, a
tardiness weight, w;, a loss penalty factor, s;, and
two due dates d} and d?. In the case that a job is
completed before the first due date,d;, no penalty
is assigned; if the completion time is between d,
and d,, the job will be penalized by a linear
tardiness penalty; otherwise, the job will be
penalized by a fixed loss penalty, s;. It is
assumed that lost jobs must still be processed on
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Fig. 1 shows the Tardy/Lost penalty function for
job i based on its completion time.

All data are supposed to be positive integers, and
jobs preemption is not allowed. The jobs have
two common due dates, called dq and d,. The
machine is continually available from time zero
and it can process at most one job at a time. The
resulting problem is denoted by 1|d} = d4,d? =
d,|TL , where TL indicates the Tardy/Lost
penalty function. For the sake of brevity, we
name this problem as P1 in the rest of this paper.
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Fig. 1. Tardy/Lost penalty function with
common due dates

Yuan [1] showed the weighted tardiness
minimization problem with a common due date
NP-hard. Since weighted tardiness is a special
case of Tardy/Lost penalty function, the problem
considered in this paper is also assumed NP-hard.
Objective functions of real-life scheduling
problems are often much more complex than the
well-known performance measures such as
weighted tardiness. Depending on the type of
contractual penalties and expected goodwill of
future revenue losses incurred, many types of
non-linear tardiness penalty functions may arise.

Tardy/Lost penalty function combines the
features of two well-known performance
measures: weighted tardiness and weighted

number of tardy jobs.

From a practical point of view, TL penalty
function is applicable in delivery contracts, most
of which are arranged based on two due dates. If
an order is early, then no penalty occurs; the
order will be penalized if its delivery time
exceeds the first due date. The penalty will
increase in proportion to the delivery time until
the second due date is reached. If the order be
delivered later than the second due date, it
becomes lost and takes a maximum fixed penalty.
The Tardy/Lost performance measure can be
considered as a special case for scheduling

d' d’ C

i

problems with order acceptance assumption.
Here, the objective is minimizing weighted
tardiness on a single machine and a common due
date where the rejection cost for job i can be
defined as loss penalty s;. Shabtay [2], in the
survey paper, studied some scheduling problems
with order acceptance assumption.

The main contributions of this paper can be
summarized as: (1) Introducing a new and
general penalty function for scheduling problems,
which can be applied in many practical situations.
(2) A number of the scheduling performance
measures, such as weighted tardiness, weighted
number of tardy jobs, weighted late work,
tardiness with rejection ability, and weighted
completion time, are special cases for the TL
function and all the developed algorithms can be
applied to those cases. Even knapsack problem is
a special case for the introduced problem. (3)
According to Woeginger [3], an FPTAS is the
strongest possible polynomial time
approximation result that we can derive for an
NP-hard problem; we have developed some
FPTASs with very low time complexities for a
general problem and its special cases. (4) We
have developed three approximation algorithms,
and all of them are proved tight.

In sections 4 and 5, two special cases for the TL
penalty function are discussed. The first special
case assigns a common tardiness weight to all
jobs. According to this assumption, all jobs have
the same tardiness weights, yet with different loss
penalties. In the second special case, we set the
first due date of jobs equal to zero; so, the
problem changes to that of minimizing weighted
completion time of jobs supposing that each job
completed after due date is lost with a fixed
amount of penalty.

Table 1 provides some assumptions under which
the TL penalty function and its two special cases
are converted to some traditional performance
measures in scheduling literature.

Tab. 1. Some measures derived from Tardy/Lost penalty function and its special cases

main penalty

function

ondwnssy

special case

special case

1 2
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According to Table 1, scheduling problems with
rejection are special cases for the Tardy/Lost
performance measure. If we set s; = w;(d? —
d}) for each job i, then the TL penalty function is
equivalent to minimizing total weighted tardiness
with rejection, because we can compare tardiness
and rejection costs for a job and select the smaller
one in rejection problems. Rejection assumption
has been investigated widely in the literature.
Engels et al. [5] investigated the problem of
minimizing weighted completion times and
rejection  penalties and developed some
approximation algorithms. Shabtay et al. [6]
proposed a bi-criteria approach to scheduling a
single machine with rejection and positional
penalties. The quality of a solution is measured
by scheduling criterion F1 which is dependent on
the completion times of accepted jobs and the
total rejection cost F2. They considered four
optimization problems of (i) minimizing F1+F2,

(il)) minimizing F1 subject toF2 <R, (iii)
minimizing F2 subject to F1 <R, and (iv)
identifying the set of Pareto-optimal schedules
for (F1,F2). If criterion F1 represents total
tardiness or completion time of jobs, then
problem (i) is a special case for our proposed
Tardy/Lost penalty function where s; = w; (diz -
d}). The survey papers by Slotnick [7] and
Shabtay et al. [2] study a number of scheduling
problems with rejection.

The problem 1||Y T, is NP-hard in a strong
sense if the tardiness weights are not all equal [8]
and is optimally solvable in pseudo-polynomial
time for a fixed number of distinct due dates [9].
Cheng et al. [10] showed that the schedule that
minimizes  max;w;T;  gives an  (n-1)-
approximation for this problem. Kolliopoulos and
Steiner [9] designed  pseudo-polynomial
algorithms for the case that there is only a fixed
number of different due dates. They also
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developed an FPTAS if, in addition, the tardiness
weights are bounded by a polynomial function of
n. Karakostas et al. [11] considered the same
problem and designed a pseudo-polynomial
algorithm and applied a rounding scheme to
obtain an approximation scheme.

In a special case of problem 1| | T,,where due
date is common for all jobs, Lawler and Moore
[12] provided a pseudo-polynomial dynamic
programming algorithm in O(n?d) time and
Fathi and Nuttle [13] developed a 2-appromation
algorithm that requires O(n?) time. Kellerer and
Strusevich [14] proposed an FPTAS of
0(n®logW /&3) time complexity where W is the
sum of tardiness weights; later, Kianfar and
Moslehi [15] studied the same problem and
developed another approach to obtain a more
effective FPTAS in 0(n?/¢) time.

If the tardiness weights are equal, the problem
1| |T is NP-hard in the ordinary sense as proved
by Du and Leong [16] and it is solvable by a
pseudo-polynomial ~ dynamic  programming
algorithm proposed by Lawler [17]. For this
problem, Lawler [18] proposed a dynamic
programming algorithm and converted it into an
FPTAS of 0(n”/¢) complexity. Koulamas [19]
provided a faster FPTAS running in O(n°logn +
n%/¢e) time by applying an alternative rounding
scheme in conjunction with implementing
Kovalyov's [20] bound improvement procedure.
Della Croce et al. [21] considered some popular
constructive and decomposition heuristics, and
concluded that none of them guarantees a
constant worst-case ratio bound. Kovalyov and
Werner [22] studied the approximability of this
problem on parallel machines with a common
due date.

A number of researchers have addressed the
problem of late work minimization on a single
machine. Potts and Van Wassenhove [23]
proposed a polynomial time algorithm based on
the similarity between tardiness and late work
parameters. In another study [24], they developed
a branch-and-bound algorithm for the problem
which formed a family of approximation
algorithms based on truncated enumeration.
References [25-29] may be consulted for other
studies devoted to the late work criterion. The
results concerning late work are partially
reviewed in Chen et al. [30] and Leung [31], but
Sterna [32] addresses the first complete review of
the topic.

Kethley and Alidaee [4] modified the definition
of the late work criterion by introducing two due
dates for each job, called due date and deadline.

They called the proposed performance criterion
as "modified Weighted Late Work" which is a
special case for the Tardy/Lost penalty function
we consider in this study (see Table 1). Kianfar
and Moslehi [33] considered the Tardy/Lost
penalty function on a single machine scheduling
problem and developed two  dynamic
programming algorithms as well as a branch-and-
bound. In another study [34], they proposed a 2-
approximation algorithm and a dynamic
programming for a special case of the Tardy/Lost
penalty function. Biased tardiness penalty is
another special case for the Tardy/Lost measure,
studied by Moslehi and Kianfar [35].

The performance measure we study in this paper
is a kind of regular measure that is non-
decreasing in completion times of jobs. With
such performance measures, jobs are penalized
only for being tardy, and all inventory costs due
to early completions are ignored. Pinedo [36]
indicated that, in practice, the penalty function
associated with a scheduling problem may follow
a function in which early jobs are assigned no
penalty and those that are finished after their due
dates are assigned a penalty that increases at a
given rate. Within the penalty function, the job
reaches a point where the penalty assignment
changes and increases at a much slower pace.
The function identified by Pinedo [36] is
general; however, two more specific functions
that react similarly are the late work criterion [23,
24] and the deferral cost function [37].

Deferral cost functions have been studied by
Kahlbacher [38] who considered general penalty
functions monotonous with respect to absolute
lateness. He examined several specific cases of
the penalty function for situations in which
machine idle times are allowed or not. He also
constructed an FPTAS of the order O(n3/¢),
where € denotes precision of the approximation
solution. Federgruen and Mosheiov [39]
considered a class of single machine scheduling
problems with a common due date and general
earliness and tardiness penalties. In this study,
some polynomial greedy algorithms were
proposed and, for convex cost structures, they
also examined the worst-case ratio bound if the
due date was non-restrictive. Baptiste and
Sadykov [40] considered the objective of
minimizing a piecewise linear function. They
introduced a new Mixed Integer Programming
(MIP) model based on time interval
decomposition.

Zhou and Cai [41] examined two types of regular
performance measures, the total cost and
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maximum cost, with general cost functions. They
studied a stochastic scheduling model on a single
machine where processing times are random
variables and the machine is subject to stochastic
breakdowns. In the paper by Shabtay[42], two
continuous and non-decreasing  objective
functions are considered that include penalties
due to earliness, tardiness, number of tardy jobs,
and due date assignments. The research by
Ventura and Radhakrishnan [43] was focused on
scheduling jobs with varying processing times
and distinct due dates on a single machine.
Approximation algorithms and FPTASs are
common methods to analyze optimization
problems. Some examples about implementing
FPTAS algorithms in real-world cases can be
found in references [44-48].

The rest of this paper is organized as follows. In
Sections 2 and 3, we propose two approximation
algorithms and examine their worst-case ratio
bounds. Section 4 deals with the first special case
of the main problem P1, called problem P2,
where a dynamic programming algorithm is
converted to an FPTAS. In Section 5, a 2-
approximation algorithm, as well as an FPTAS, is
proposed for the second special case of problem
P1, called P3. Concluding remarks will be
presented in Section 6.

2. LTW/LLP! Approximation
Algorithm

In this section, an approximation algorithm with a
bounded worst-case error is proposed for problem
P1. Then, using a numerical example, we show
that the obtained error bound is tight for this
problem. We refer to this algorithm as LTW/LLP
because it selects tardy jobs based on Largest
Tardiness Weight and selects lost jobs based on
Largest Loss Penalty.
The algorithm requires at most n iterations while,
in each iteration k, a job is scheduled in the k™
position from the end of sequence, i.e., position
(n-k+1). Since TL penalty function is a type of
ordinary performance measures, no idle time is
considered for a machine. So, we assume that
jobs are scheduled continually from time zero to
Poyum = 211 ;- Now, let’s define some notations
used in the remaining of this paper. Also, suppose
that each notation, including an asterisk (¥), is
related to the optimal sequence.
oL TW/LLP . The sequence generated by LTW/LLP
algorithm
Z?: The penalty value generated by sequence o
Z7: The penalty of job i in sequence o
C?: The completion time of job i in sequence o

C[‘i’]: The completion time of a job in the i

position of sequence o

po: The sum processing times of jobs in sequence
o

It may be easily seen that LTW/LLP uses a simple
sorting of n elements and, hence, runs in
O(nlogn) time. The steps of the LTW/LLP
algorithm are as follows:

Step 1. Let U,, (Us) be a set of unscheduled jobs

sorted according to non-decreasing order of

tardiness  weights  (loss  penalties).  Set
LTW/LLP _ _

C[n] =Pymandr =n.

Step 2. Schedule the first job in set Uy, job k, into

the r" position of sequence. Remove job k from

Us and U,,. Set i M = cf1"MP — py and
r=r—1

Step 3. If C[Lrgw/ P S d,, then go back to Step

2; else if C[Lrgw/LLP > 0, go to Step 4 else, go to
Step 7.

Step 4. Schedule the first job in U,,, job k', into
the (n-r+1)" position of sequence. Remove job k’

from Uy,. Set ¢y =i /™ —py, and
r=r—1.
Step 5. If C LTW/LLP 0, then go back to Step 4;

[r]
else go to Step 6.
Step 6. Schedule the remaining unscheduled jobs
into the beginning of sequence using any
arbitrary order

Step 7. Return the TL penalty related to the final
sequence.

Example 1. Consider a problem 1|d} = dy,d? =
d,|TL with three jobs according to the data from
Table 2. Suppose that d; = 10 and d, = 20.

Tab. 2. Parameters of jobs in Example 1

jobi p; W, S,

1 6 4 46

2 11 7 52

3 9 3 42
Initially, C[L;]W/ P —26 and r=3. The

algorithm LTW/LLP schedules job 3 with loss

penalty 42 to the end of the schedule. We get

C[LZT]W/ P —17< d, and the algorithm goes to

step 4 where job 1 with w; = 4 is selected to be
scheduled at the second position of the sequence.
The remaining job 2 is then positioned to the
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beginning of the schedule. The obtained sequence Proof. Suppose that job k is the most costly job
is 2-1-3 with total penalty of 72. in gLTW/LLP (e ZiTW/LLP > ZiLTW/LLPvl' =

Theorem 1. Let n’ be the number of tardy or lost
jobs generated by the LTW/LLP algorithm for an
instance of the problem P1.  Then,
ZLTW/LLP j 7% < 1.

1,...,n). Here, we distinguish between two
different cases:
Case 1. Job k completes at least as late in ¢* as in

. LTW/LLP
olTW/LLP (ie., Ci = C /LLP,

In this case,

wymax{0,C; — d,} = wymax {0, C,fTW/LLP - dl} (D
From Eq. (1), it follows that Z; > Z;TW/ MP and, considering Z* > Zy, we get Z* = Z,iTW/ LLP

Case 2. Job k completes earlier in o* than it does in oXTW/LP (i, C; < C,fTW/LLP)

In this case, there must be a job m that precedes k in a2™"/LLP but completes at least as late in 0* as k does

in gLTW/LLP We may divide this case into two sub-cases.

Sub-case 2.1. ¢,/ < d,

Regarding C&TW/ HP < C,fTW/ HE we get C,LnTW/ HE < d,. Since job m precedes job k in o

be true that w,,, = wy,. It follows that

LTW/LLP it must

« LTW/LLP
> Cli,TW/LLP} . wy,max{0, C;, — d,} = wymax {0’ cL JLLP _ d1}

LTW/LLP
W 2 Wi Sm = wipmax {0, Cy /LLP _ dl}

A 2)

Finally, from Z* > Zp,, it will be concluded that Z* > Z,iTW/ LLP

Sub-case 2.2. C,fTW/ MP > d,

LTW/LLP LTW/LLP

Regarding C,;, < Cy we get s, = s and thus,

LTW/LLP

Cr 2 Gy >dy > Zp=spzs =2 (3)

k

So, from Eq. (3) and Z* = Z;,,, we derive Z* = Z
LTW/LLP

LTW /LLP
& .

There are n' tardy or lost jobs in o
sequence, we get

and, from the fact that job k is the most costly one in this

ZﬁTW/LLP <7* = ZLTW/LLP < an’gTW/LLP <n'z* 4)
that completes the proof.

The following example illustrates that the worst- LTW/LLP algorithm gives the sequence (2,1)
case ratio bound obtained by LTW/LLP algorithm with 2K total penalty while the optimal penalty
is tight for problem P1. for this problem is equal to d, + K + 1 related to
Example 2. Consider a problem P1 with 2 jobs the sequence (1,2).Thus,

described in Table 3. Let K be a very big positive
integer and set d; = 0.

. ZLTW/LLP ) 2K
Tab. 3. Parameters of jobs in Example 2 Igl_{{}o PR At
Job i P, W, S, 2 (5)
1 d, 1 K Since 2 jobs are tardy or lost in glTW/LLP | the
K worst-case ratio bound of this algorithm is tight.
2 d - K+1
2 d2
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3. SPT? Approximation Algorithm

In this algorithm, jobs are sequenced according to
non-decreasing order of processing times;
therefore, it will be implemented in O(n logn)
time.

Theorem 2. Let wy,;, and wy,,, be respectively
the smallest and largest tardiness weights and
Smin and Sy, be the smallest and largest loss
penalties. Then, for each instance of problem P1,

we have 2 SPT {M M}

< max )

T Wmin Smin
Proof. Create n dummy jobs all having tardiness
weight w,;, and loss penalty S;,i,. It can be

easily tested that if we schedule these dummy
jobs according to SPT ordering, the related TL
penalty, called LB*, is a lower bound on the total
TL penalty of any sequence for the real jobs.
Similarly, create a set of n dummy jobs all with
tardiness weight w,,,, and loss penalty S, -
We can verify that the associated total penalty,
called UBSPT | is an upper bound on Z5PT for the
real jobs. Let ng, ny, and n; be the number of
early, tardy, and lost jobs in SPT ordering,
respectively. Then,

UBSFT = Wmax[(c[ill;T-i-l] - d1)+ ---+(CSPT - dl)] + Smax™y ()

[nr]

LB = Win[(GE7T, 1y = dy)+ .. +(CEPT = )] + St %

And, if we signify the term (Cf7, 47 — dq)+ ... +(C

ng+1

UBSPT - WinaxTSPT + Spaxny
LB* — WminTSPT + SminNL
Wmax Smax
< max
Wiin Smin

that completes the proof.

The following example illustrates that the worst-
case ratio bound obtained by SPT approximation
algorithm is tight for problem P1.

Example 3. Consider problem P1 with 2 jobs
described in Table 4. Set d; = K and d, = K +
1, where K is a very big integer.

Tab. 4. Parameters of jobs in Example 3

job i p; W S,
1 K 1 K
2 K+1 1 2K

SPT algorithm generates the sequence (1,2) with
total penalty equal to2K, while the optimal
sequence for this example is (2,1) with total
penalty of K+1. So,

ZSPT 2K
li =
Koe 7 K+ 1
=2 €)

{Wmax Smax} _ {1 ZK}
max\——,——¢=maxiy-,——

Wmin Smin 1 K

=2 (10)

The above relations show that the worst-case
ratio bound generated by the SPT algorithm is
tight for this instance and, hence, for problem P1
in general form.

—dy) by TSPT then

(8)

4. First Special Case

In this section, we study a special case of the
problem defined in section 1 in which all jobs
have a common tardiness weight, yet with
different loss penalties (problem P2). All other
assumptions are the same as the ones in 1|d} =
dy,d? = d,|TL. This problem will be denoted by
1|d} = dy,d? = dy,w; = w|TL, or simply
problem P2, and its objective function is
described as follows:

Z;
0 if ¢ <d,
=lw(c,—d)  if d<C <d, (11)
Si lf Ci > dz

Therefore, the problem in this special case is
about scheduling n jobs on a single machine with
two common due dates with the objective of
minimizing total penalty function defined by Eq.
(11). First, we discuss the time complexity of
problem P2. Then, we propose an FPTAS for
generating approximate solutions.

4-1. Time complexity analysis of the problem
Here, the time complexity of problem P2 is
examined, and it will be proved that this problem
is at least NP-hard in an ordinary sense. Consider
a case in which all tardiness weights are equal to
zero and, therefore, the objective function
converts to the following form.
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Z;

(12)

{0 if  C <d,
Si lf Ci > dz

We want to show that minimizing the above
objective function on a single machine has a
direct relation with the knapsack problem. The
knapsack problem includes a set of n objects I,
each of which having a volume equal to v; and a
profit equal to q;. The goal is to put a sub-set of
these objects into a knapsack of volume V, such
that the selected objects have the maximum total
profit.

It can be easily verified that two problems P2 and
knapsack are transformable to each other by
setting v; =p;, qi=s; and V =d,. This
transformation is done by Z¥naP 4 ZTL = ¥ g,
where ZK"%P and ZTL denote the objective
functions of the knapsack and 1|d} = dq,d? =
d,, w; = 0|TL problems, and Y. s; is the sum
of loss penalties. Since )i“;s; is a constant
value, we conclude that minimizing the objective
function in problem P2 is equivalent to
maximizing the sum profits in the knapsack
problem.

It is obvious that problem P2 is at least as
complex as the knapsack problem; so, regarding
the fact that the knapsack problem is NP-hard in
an ordinary sense, we will conclude that the
problem considered in this section is at least a
type of NP-hard problems in an ordinary sense.

4-2. Dynamic programming algorithm

Now, we propose a dynamic programming
algorithm and convert it to an FPTAS by
restricting the number of states generated in each
iteration. The main idea of this dynamic
programming algorithm is taken from the study
by Lawler and Moore [12] where they considered
the problem of minimizing tardiness with relative
and absolute deadlines that can be denoted as
1|dl = d,Wl' = 1|TL

Suppose that jobs are indexed according to non-
decreasing order of processing times (SPT). An
optimal solution is composed of two groups of
jobs; the first group includes early and tardy jobs
with completion times no more than d,, while the
second group includes lost jobs with completion
times greater than d,. In an optimal sequence,
jobs in the first group must be scheduled
according to their order of indices (SPT) and lost
jobs in the second group may have any arbitrary
order.

In the following dynamic programming
algorithm, jobs in the first group, early/tardy jobs,
are continually scheduled from time zero, while
lost jobs are scheduled from end of the sequence
to the beginning according to their order of
indices so that they complete exactly at time
Poum = ?:1 bi.

In this algorithm, each state in state space Vj
shows a partial sequence for the first k jobs and is
indicated by the vector [t,f]. Variable t shows
the sum of processing times for the jobs in the
first group and f is the total penalty of the
corresponding partial sequence. This algorithm
can be described as follows:

Algorithm DP1
Set vy = {[0,0]}
For each k = {1,2,...,n}, consider all states
[t' f] in V-1
o) If t + py < d,, then add state [t + py, f +
w.max{0,t + p, — d,}] to states space v
o] Add [t, f + si] to states space vy,
2.1. For all the states [t, f] € v, with equal
value for t, keep at most one state having
the minimum value of f.
2.2.Remove state space vy _q
3. Return the optimal solution Z* =

n =

i {f}
To calculate the time complexity of this
algorithm, regarding that all input parameters are
integers, we can restrict the number of states in
each v, by d,. This is because variable t can at
most take d, different values, and in each
iteration and for each t, we keep at most one state
with the smallest f value. The running time of
Step 2 is proportional to Xji_;|vi| and is
O(n.d,). Finally, regarding that Step 3 needs
0(d,) time, the total complexity of this
algorithm will be obtained as O(n . d,).

4-3. FPTAS algorithm

This FPTAS is based on two phases. In the first
phase, algorithm LTW/LLP is used to determine
an upper bound for problem P2 ; in the second
phase, the execution of algorithm DP1 is
modified in order to reduce the number of states
and running time. One common way for
transforming a dynamic programming algorithm
to FPTAS is the technique of structuring the
execution of an algorithm. The main idea of this
technique is to remove a special part of the states
generated by the algorithm in such a way that the
modified algorithm becomes faster yielding an
approximate solution instead of the optimal one.
This method was first introduced by Ibarra and
Kim [49] for solving the knapsack problem and
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has in recent years been extended to numerous
scheduling problems (see [50-54]).

Let Zy denote the objective value returned by the
algorithm LTW/LLP for an instance of problem
P2 and ¢ be the maximum acceptable error for
FPTAS. The FPTAS algorithm works on the
reduced state space vj instead of vi. To reduce
the number of states in each iteration, we split the
feasible interval [0,Zy] related to the second
coordinate of state [t,f] into L sub-intervals
I, =[(m—1)4,m4] ,1 <m <L of length A.
For each of the resulting sub-intervals I,,, we
keep at most one state with the smallest value of
t. Given an arbitrary € > 0, define

Z n?
=2, L=[— ,
n &
Zy
A =— 13
! (13)

Let LB denote a lower bound on the optimal
value for problem P2. Since, L = 0(n?/¢), the
complexity of the FPTAS algorithm is 0(n3/¢).
This algorithm can be described as follows.

Algorithm FPTAS1
1. Setvi ={[0,0]}
2. For each k = {1,2,...,n}, consider all states
[t' f] in Vlg—l

0] If t + py < d,, then add state [t + py, f +
w.max{0,t + p, —d,}] to states space
vk

o] Add [t, f + si] to the states space v}

2.1. For all the states [t,f] € vif with equal
value for t, keep at most one state having
the minimum value of f.

22. Let [t,fl,, be a state in v} such that
f €I, and t has the minimum value. Set
vi ={[t,flm | 1<m<L}.

2.3.  Remove states space v} _;

3. Return the final solution Z# = min#{f}.

[t.f]evn
Example 4. This numerical example is designed
to describe the procedure of algorithm FPTASI.
Consider the data from Table 2 and suppose that
all the jobs have a common tardiness weight
w=4 and let € =0.5. Algorithm LTW/LLP
generates sequence 2-1-3 with total penalty 74.

We have LB = 2 =247, L = [i] =18, and
3 0.5

A=%=4.11. Jobs 1, 3, and 2 are selected

based on the SPT ordering and are scheduled,
respectively, during the algorithm's iterations.
Initially, v§ = [0,0]. At the first step, state space
v¥ = {[6,0],[0,46]} is created. Four states are
generated by the second iteration where the
algorithm removes the state [9,46] and the
resulting state space is
v§ = {[15,20],[6,42],[0,88]}. Job 2 s
scheduled in the third iteration, where five states
are generated and, after removing states [17,70]
and [11,92], the remaining state space is v¥ =
{[15,72],[6,94],[0,140]}. Therefore, the final
solution is Z# = 72, which obviously is better
than the solution from algorithm LTW/LLP.

4-4.\Worst-case analysis of algorithm FPTAS1
The worst-case analysis is based on a comparison

of execution of algorithms DP1 and FPTAS1. We
may remark that the main action of FPTAS1
consists in reducing the cardinality of the state
spaces by splitting the interval of f into sub-
intervals and then replacing all vectors belonging
to the same sub-interval by a single approximate
state with the smallest t. First, a lemma is
provided to prove the worst-case ratio bound of
FPTASL.

Lemma 1. Let [¢, f] € vy be an arbitrary state in
DP1. The FPTAS algorithm generates at least
one state [t*,f*] in v{f, such that t* <t and
A< f+kA.

Proof. The proof is done by induction on k. For
k = 0, obviously, we have v{ = v,. Suppose that
the lemma is valid up to k — 1 and we want to
show its validity for iteration k. Let [¢, f] be a
state in v, generated by DP1 from a feasible state
[t', f'] at iteration k — 1. Here, two cases can be
distinguished, and we prove the statement for
iteration K in these two cases.

Case 1. [t fl=1[t'+pr f +w.max{0,t +
Pk — di}]

Since [t, f'] € v4_1, there is a state [t'#, f'#] €
vi_y, such that t'# <t and f*<f + (k-
1)A . Therefore, FPTAS1 generates the state
[t* +pr, f* + w.max{0,t'* + p;, —dy}] in
the k" iteration that may be eliminated when
cleaning up the state sub-set. Let [4, u] be the
remaining state in v} that is at the same interval
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as [t +pp, f* +w.max{0,t'* +p, —d,}] .
Thus, we drive that

A<t 4pe <t +py
=t (14)

and

w<f*+wmax{0,t'* +p,—d;}+ 4
<f'+k—-DA4A+w.max{0,t'+p, —d;}+ 4
=f+kd (15)

Consequently, the lemma holds for iteration k in

this case.

Case 2. [t, fl1=[t', f + 5]

Since the state [t', f'] is in vj_q, there exists a

state [t'*, f*] € vi_, such that t'* <t and

f*<f +k-1A. FPTAS1

generates the state [t'*, f'* + 5] in iteration K

Therefore,

that may be eliminated during the cleaning up
procedure. Let [A’, u'] be the remaining state in
v} that is at the same interval as [t'#, f'# + s;].
So,

r<tt<t
= (16)

and

WSff+s,+4

<fl+k—-Dl+s,+4

=f+kA 17)
Thus, the lemma is proved for iteration K in this
case, too.
Theorem 3. Given an arbitrary & > 0, algorithm
FPTAS1 outputs a sequence with Z* penalty for
problem P2, such that Z# — Z* < ¢ Z*.
Proof. By definition, the optimal sequence can be
related to a state [t* f*] in v,. According to
Lemma 1, the algorithm FPTAS1 generates a
state [t¥*, f#] in v} such that t* < t* and

Z n.LB
f#Sf*+nA=f*+nTH=f*+nm
<f*+¢.LB
<(1+8f* (18)

It is clear that there always exists a feasible state
in FPTASL related to any feasible state generated
by DP1. It is because t# < t holds in all states of

the FPTAS algorithm and none of the states will
be lost by constraint t + p;, < d, in Step 2. This
will complete the proof.

5. Second Special Case
In this section, we study another special case of
the main problem 1|d} =d;,d? = d,|TL in
which the first common due date is equal to zero.
This problem will be denoted by 1|d} = 0,d? =
d,|TL, or simply problem P3, and its objective
function is described as follows:

€ <d,

_ Wi'Ci lf
- { C;>d, (19)

Si if

Formally, the problem in this special case is
about scheduling n jobs on a single machine with
one common due date and objective of
minimizing total penalty function defined by Eq.
(19). Similar to the previous special case, the
time complexity of problem P3 may be
examined, and it will be proved that this problem
is at least NP-hard in an ordinary sense. Consider
a case in which all tardiness weights, w;, are
equal to zero. The resulting objective function is
the same as Eq. (12), and then, it can be
transformed to the knapsack problem (see section
4.1). Since problem P3 is at least as complex as
the knapsack problem, we will conclude that the
problem considered in this section is at least NP-
hard in an ordinary sense.

5-1. MLCR? approximation algorithm

Here, we present an approximation algorithm for
problem P3 and show that the worst-case ratio
bound of this algorithm is equal to 2. We refer to
this algorithm as MLCR and name the sequence it
generates as G. We also adopt notation gp; to
represent a job in the i position in sequence
G = (g[l],g[z],...,g[n]). This algorithm requires
at most n iterations while in each iteration r, th

(n—r+ 1" clement of G, gp_rs1p, Is
determined among the unscheduled jobs that
generates the minimum value for
si/min(C[fl_rH] — d,, p;). Furthermore, if there
exists an unscheduled job filling the remaining
period through d,during an iteration, the
relevant sequence (sequence G) will be saved in
addition to the main sequence G. The algorithm
iterates until the sequence of scheduled jobs

z. Minimum Loss Cost Ratio
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passes d, and then, puts the unscheduled jobs
into the beginnings of sequences G and G based
on the weighted shortest processing time (WSPT)
ordering. The algorithm returns the best of two
sequences G and G as the final result. Let Z [Gr‘n]
denote sum penalties related to the jobs from r"
position through the last job in sequence G. The
steps of the algorithm are as follows:

Step 1. Let U=1{1,2,..,n} be a set of
unscheduled jobs and r be the counter index
of positions in the sequence. Set Cpy) = Fym

and r = n.

Step 2. Define U = {i € U | p; = Cpny — d>}.
If U is empty, then Zp.s = o0; else, select a
job 1 with minimum loss penalty (s;) from U.
Let i = Tand Zpest = Si.

Step 3. For all jobs i € U, calculate 6; values

by the following equation and select job k

such that 6, = r_r&igl{@i}. If there is a tie,
l

select the job with smaller processing time.
0;
min('pi, Crry — d)

(20)

Step 4. Set U=U/{k}, gy =k and
Cir-1) = Cpr] — Pk

Step 5. If U={i €U |p; = Cpp_q; — dp} is
not empty, select job £ with the minimum loss
penalty from Uand set Z = s;. If Z + Z [Gr_n] <
Zpest> then Zp.e =7+ Z[i’n] and Jp; =
g Vi=r,...,nand gp_q =1

Step 6. If Cj_1) > d;, then = r — 1 and go
back to Step 3; else, go to Step 7.

Step 7. Put unscheduled jobs at the beginning
of each of sequences G and G based on the
WSPT ordering.

Step 8. If Z¢ < ZC, return sequence G =

(911912} ---»9pn)); else, return  sequence
G = (Gup 21+ +» Gm)-

This algorithm includes a simple sorting of n
elements, and hence, its time complexity is
O(nlogn). Next, we will provide a numerical
example to illustrate how the algorithm MLCR
works.

Example 5. Consider problem P3 with 4 jobs
described in Table 5. Set d; = 0 and d, = 20.

Tab. 5. Parameters of jobs in Example 5

job i . W, s,
1 5 2 80
2 14 3 150
3 8 5 250
4 10 6 140

First, Cq) = 37, U is empty, and Zpe5e = 0. In
the first iteration (r = 4), we have 6; = 16,60, =
37.5,6; = 31.25,0, = 14 where job 4 has the
minimum  value and, hence, g =4
Furthermore, Ci3) = 27, U=1{23}, job 2 is
selected to fill the lost period, and Z = 150.
From Zgpgq = 140, we get Zpeq = 290,
g1 = 4, and gp3; = 2. In second iteration (r =
3), we get 6, =16,0, =21.43,0; =35.71
where job 1 has the minimum value; so, gj3 = 1.
Simply, we get Cj =22, U={23}, i=2,
Z =150 and, considering that Z+ Z[G3'4] =
150 + 220 > Zpese = 290, the value of Z,.q
will remain unchanged and equal to 290. In the
next iteration (r = 2), job 2 is sequenced into the
second position of G while (j;;=8. By
assigning the remaining unscheduled jobs to the
beginning of the sequences, we will get G =
(3,2,1,4) and G = (3,1,2,4). Finally, Z¢ = 510
and also Z¢ = 356 will be obtained and sequence
G is returned as the approximate solution.

In the following, we present two theorems about
problem P3, which are used for proving the
worst-case ratio bound of algorithm MLCR.
Theorem 4. In any optimal sequence for problem
P3, the tardy jobs with start time less than or
equal to d, must be sequenced by WSPT
ordering.

Proof. The proof is easily done by swapping each
pair of adjacent tardy jobs. ]

Theorem 5. Consider problem P3. Define two

o=(0q,...,0m) and o =

sequences
(0'y,...,0" ) of lost jobs on the common time
interval [d2, Psym], where relation
z7 < 7!
min(p;,C{—dz) — min(pj,c;”—dz)

and Vj € ¢'; If p, < p,, holds, then Z% < Z9'.

holds for all i € o

Proof. Consider two sequences o and ¢’ with loss
penalties shown in Fig. 2. Suppose that 87 (t) and
0°'(t) denote the slopes of the functions related
to sequences g and @’ at time t, respectively;
then, according to theorem’s assumption, we
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have 07(t) < 07 (t) for all t € [dy, Psyml -
Obviously, for all t € [dy, Pgym], the function
related to sequence o falls under the function

A
penalty

related to sequence a'; regarding p, < pg, We
getZ° < Z9'.

i i H B

c?l C',,ICG_.(;‘F: c,cC C C =C, =P

b Lo T Tf

pﬂ'

Fig. 2. Penalties related to sequences a and ¢’

Theorem 6. Algorithm MLCR is a 2-
approximation for problem P3.

Proof. Recall that G is the sequence generated by
algorithm MLCR and each notation including an
asterisk (*) is related to the optimal sequence.
Algorithm MLCR schedules jobs iteratively from
the end of the sequence to the beginning.
Through this procedure, jobs are classified into
two groups: tardy and lost. On the other hand,
each job may be tardy, or lost in optimal
sequence. Thus, we get four groups of jobs:

{H,B, R, Q}, as shown in Fig. 3. Sets H include a
number of jobs which are lost in G and tardy in
the optimal sequence. Sets R include some other
jobs which are tardy in G and lost in the optimal
sequence. Sets B and Q indicate the lost jobs in
both sequences and the tardy jobs in both
sequences, respectively. For example, jobs in sets
{HG, Hg,...,Hgl} and {H3,H5,...,Hy,,} are the
same jobs, but differently grouped by sequence G
and optimal sequence.

G= {g|||"g§2|""‘g5r| I|‘g|n|)

A
Pro  Pop  Pre Py Pro,  Poi  Puy  Pug Py Pug Py Py
> I > e——>¢
1
1
RO O | R | OF | - Ry | O | 1B H BY | HY | B | uf
1
i
a’l: st
optimal sequence
Py Py Py, Py Py Py, Py, Py Pp, Py P, Py
<> A S 4 ——rCc—><—> < > & >< >
1
1
QI Q: Q. ] Hl H m2 :BJ. 2 R.( B_‘ R BI RI

sum

Fig. 3. Sequence of jobs in G and the optimal sequence

First, we compare the penalty of tardy jobs in G
(jobs in sets R and Q%) with some penalties in

the optimal sequence; then, we should repeat this
comparison for lost jobs in sequence G. Since
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jobs in sets H are penalized by tardiness weights Let Z{GT} and ZET} denote the sum penalties for
only in the optimal sequence, the worst-case ratio tardy jobs in sequence G and the optimal
occurs when the tardiness weight w; is equal to sequence, respectively. Also, w, indicates the

zero for these sets. Therefore, according to the sum tardiness weights of jobs in a sub-sequence
WSPT ordering for tardy jobs in the optimal P

sequence, we conclude that sets H must be
scheduled after sets Q in the optimal sequence.

Ziny = i Z ) +i Z (w€7) = i Z (w;C7) 21

i=1jeQ; i=1 jeH; i=1jeQ;
G _ vy G my G
Ziry = Xizh jle(WjCj )+Zi:1 jeRiG(WjCj )

= X% Zjeq;(wi G ) + 204 (WQF =1 Pr{ )

mq i i-1
0 e | 2pag + 2 Py (22)
i=1 j=1 j=1

According to the fact that tardy jobs are arranged according to the WSPT ordering in both sequences G and
optimal, we get:

P P

vi=12,...,m , Vj€ERS, '€ Qf
W] Wj’ 1 ] i ] Ql

> pjw;, <pwVi=12,....m; , VjE RS, j' € Qf
= pRiGWQiG < inGWRiGVi =12,...my (23)

and so, we will get

msy my my mq i i-1

G *

Zin s 2, D)+ D wag 2, pag |+ )\ wie| 2, pas + . pos
i=1 jeQ; i=1 j=i i=1 j=1 j=1

mq i mq
< Zipy+ )| wie | Dpag + Q. peg
i=1 = =
my
<Zin+) Yy (24)

i=1 jerf

Now, we compare the penalty of lost jobs in G (jobs in sets H¢ and B¢) with some penalties in the optimal
sequence. Let Z{GL} and Z{*L} denote the sum penalties for lost jobs in the sequence G and the optimal
sequence, respectively. Suppose j as the first lost job in sequence G, i.e., j: = {j € BS, ,CjG <Cf vie
Bgl}. Thus,

k]_ kl
ZPH;: +2p3ic — P < Feum — d2
i=1 i=1

K, k,
XPR{‘ +Z pBl-* = Poym — d,
i=1 i=1

-
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pHG <z Pr; +Pj (25)

In Step 3 of the algorlthm, MLCR _]ObS are selected accordlng to the non—decreasmg order of 6; values. So,
according to the fact that job j is selected after all other lost jobs by MLCR and regarding that jobs in sets R
are not selected as lost jobs by MLCR,

S; S3

j Ji .
Vi = 1,...,k1 )
mm(p], dz) mln(p], A dz)

Vj € Hf (26)

5; Sjir : G

=1,....k; , VjEH,

mm(p], dz) mln(p],, ; dz) !
vi'=1,...,k; , Vj'€R} 27)

By summarizing (25), (26), and (27) and from Theorem 5, we conclude that:

ky ks
Z Z Sj SZ 2 Sjr + 5 (28)

i=1 jenS i=1 jI€R;

:Z{GL}SZZSJ’+SJ+ZZSJ (29)

Finally, from (24) and (29), it will be concluded that

G _ 7G G

<Z{T}+zzs,+zz +22

]ERG i=1 jIeR; ]EBG
=Z{*T}+Z{*L}+Z Z Sj, +Sj
i=1 jreR;]
<27° (30)

This completes the proof.

5-2. Dynamic programming algorithm

Again, we propose a dynamic programming
algorithm and convert it to an FPTAS by the
technique of constructing the execution of an
algorithm. Suppose that jobs are indexed
according to the WSPT ordering. An optimal
solution is composed of two groups of jobs; the
first group includes tardy jobs with completion
times no more than d,, while the second group

includes lost jobs with completion times greater
than d,.

In the following dynamic programming
algorithm, jobs in the first group are continually
scheduled from time zero and according to their
order of indices, while lost jobs are scheduled
from the end of the sequence to the beginning so
that they complete exactly at time Py,,,. The
steps of this algorithm are as follows:
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Algorithm DP2
1. Setv, ={[0,0]}
2. For each k = {1,2,...,n}, consider all states
[t' f] in V-1
o If t+pg <d,, add the state [t + py, f +
wy . (t + pr)] to states space vy,
o] Add [t, f + si] to states space vy
2.1.  For all the states [t, f] € v, with equal
value for t, keep at most one state with

minimum f.
2.2. Remove states space vj_q
3. Return the optimal solution Z* = min {f}

[t.flevn
The time complexity of this algorithm is 0(n.d,)
which can be verified through the same deduction
as algorithm DP1.

5-3. FPTAS algorithm

This FPTAS is based on two phases. In the first
phase, algorithm MLCR is used to determine an
upper bound for problem P3 and, in the second
phase, the execution of algorithm DP2 is
modified in order to reduce the number of states
and running time. Recall that Z¢ denotes the
objective value returned by the algorithm MLCR
for an instance of problem P3.

The FPTAS algorithm works on reduced state
space v} instead of v;. To reduce the number of
states in each iteration, we split the feasible
interval [0,Z¢] related to the second coordinate
of state [t,f] into L equal sub-intervals I, =
[(m—1)4,mA4] ,1 <m <L of length A. For
each of the resulting sub-intervals I,,,, we keep at
most one state with the smallest value t. Given an
arbitrary € > 0, define

Z6 2n
LB = — , L=[—l,A
2 €

== 31)

Since L = 0(n/¢), the complexity of the FPTAS
algorithm is obtained as 0(n?/¢). This algorithm
can be described as follows:
Algorithm FPTAS2
1. Setvi ={[0,0]}
2. For each k = {1,2,...,n}, consider all states
[t, f] in V;:—l
o] If t+ px <d,, add the state [t + pg, f +
wy . (t + pg)] to states space Vi
o] Add [t, f + si] to the states space v}
2.1. For all the states [t, f] € vf with equal value
for t, keep at most one state with
minimum f.

2.2.  Let [t,f];, be a state in vj such that
f € I, and t has the minimum value. Set
vi={tflm | 1Sm <L}

2.3. Remove states space vj_;
3. Return the final solution Z# = min {f}
[e.fev;

Example 6. This example describes the steps of
algorithm FPTAS2. Consider the data from Table
2. Suppose that d; = 0 and d, = 15; also, let
€ = 0.5. Algorithm MLCR generates sequence 1-

3-2 with total penalty Z% = 118. We have

LB=28_59 L=[i]=12 and A =28_
2 0.5 12

9.83. Jobs 1, 2, and 3 are selected, respectively,
based on the WSPT ordering and are scheduled
during the iterations. From step 1, we have
v =[0,0]. At the first iteration, we get vf =
{[6,24],[0,46]}. Three states are generated by the
second iteration making the state space v} =
{[6,76],[11,123],[0,98]}. Job 3 is scheduled at
the third iteration where five states are generated
and, after removing states [15,121] and [9,125],
the remaining state space is
v¥ ={[6,118],[11,165],[0,140]}. So, the final

solution is Z# = 118.

5-4. Worst-case analysis of algorithm
FPTAS2

The worst-case analysis is based on comparing
the execution of algorithms DP2 and FPTAS2.
First, a lemma is provided, and then, the main
Theorem will be proved.

Lemma 2. Let [¢, f] € vy be an arbitrary state in
DP2. Algorithm FPTAS2 generates at least one
state [t*, f#] in v, such that t# <t and f¥* <
f +kA.

Proof. Similar to the proof of Lemma 1, this
lemma is proved by induction on k. Again, two
cases can be distinguished where, in the first
case, [t,f] =[t' + pi, f' + wi(t' + py)] and, in
the second case, [t,f]=1[t,f +sx]. The
procedure is mainly the same as the proof of
Lemma 1; however, the only difference is in Egs.
(15) and (17) that must be changed to Egs. (32)
and (33), respectively.
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L 4w (t*+p) +4
<flfHk—DA+w,.(t'+p)+ 4
=f+kA (32)

W<ff+s,+4
<f'+(k—1DA+s,+4
=f+ka (33)

Theorem 6. Given an arbitrary € > 0, algorithm
FPTAS2 outputs a sequence with Z# penalty for
problem P3 such that Z# — Z* < ¢ Z*.

Proof. By definition, the optimal sequence can be
related to a state [t*,f*] in v,. According to
Lemma 2, algorithm FPTASZ2 generates a state
[t#, f#] in Vi such that t¥ < t* and

fA<f+na
26 2.LB
R A TRy
<f+e.lB
<1 +eof (34)

Since t* <t holds in all states of the FPTAS
algorithm, it is clear that there always exists a
feasible state in FPTAS2 related to any feasible
state generated by DP2. This completes the
proof. m

6. Conclusion

In this paper, we considered a less studied
performance criteria for scheduling problems,
named Tardy/Lost, and analyzed two of its
special cases from the approximability point of
view. We showed that many of popular objective
functions for scheduling problems, such as
weighted tardiness, late work, and tardiness with
rejection, are special cases for the proposed
Tardy/Lost performance criteria and, hence, the
results of this study are applicable to them. Two
polynomial-time approximation algorithms were
developed for the problem of minimizing TL
measure with common due dates on a single
machine. The worst-case ratio bounds of these
algorithms were proved, and their tightness was
also shown through some numerical examples.

The first special case occurs when all jobs have
the same tardiness weights. For this case, after
proving the complexity of the problem, an

FPTAS was developed that runs in O(n3/e)
time. In the second special case, none of the jobs
becomes early under any arbitrary sequence. We
have developed a 2-approximation algorithm for
this case and verified its tightness. Next, a
dynamic programming algorithm was developed
and converted to an FPTAS of 0(n?/e) time
complexity.

In future research, we aim to adjust our scheme to
handle the problem with any fixed number of
distinct due dates. Another interesting research
goal is to study the Tardy/Lost measure in more
complex scheduling environments such as
parallel machine or flow shops and extend the
results. The development of better approximation
algorithms and FPTASs is also a challenging
subject.
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